Overview of Ground-Motion Issues for Cascadia Megathrust Events: Simulation of Ground-Motions and Earthquake Site Response

نویسندگان

  • Hadi Ghofrani
  • Gail M. Atkinson
  • Sheri Molnar
چکیده

Ground motions for earthquakes of M7.5 to 9.0 on the Cascadia subduction interface are simulated based on a stochastic finite-fault model and used to estimate average response spectra for reference firm soil conditions. The simulations are first validated by modeling the wealth of ground-motion data from the 2011 M9.0 Tohoku earthquake of Japan. Adjustments to the calibrated model are then made to consider average source, attenuation and site parameters for the Cascadia region. This includes an evaluation of the likely variability in stress drop for large interface earthquakes and an assessment of regional attenuation and site effects. We perform best-estimate simulations for a preferred set of input parameters. Typical results suggest mean values of 5%-damped pseudoacceleration in the range from about 100 to 200 cm/s2, at frequencies from 1 to 4Hz, for firm-ground conditions in Vancouver. Uncertainty in most-likely value of the parameter representing stress drop causes variability in simulated response spectra of about ±50%. Uncertainties in the attenuation model produce even larger variability in response spectral amplitudes—a factor of about two at a closest distance to the rupture plane (Rcd) of 100 km, becoming even larger at greater distances. It is thus important to establish the regional attenuation model for ground-motion simulations and to bound the source properties controlling radiation of ground motion. We calculate theoretical onedimensional spectral amplification estimates for four selected Fraser River Delta sites to show how the presence of softer sediments in the region may alter the predicted ground motions. The amplification functions are largely consistent with observed spectral amplification at Fraser River delta sites, suggesting amplification by factors of 2.5–5 at the peak frequency of the site; we note that deep sites in the delta have a low peak frequency, ∼0.3Hz. This work will aid in seismic hazard assessment and mitigation efforts in the active Cascadia region of southwestern BC. An important consideration is that the uncertainties are large and present a dominant unknown when assessing seismic risk. We find that variability in the expected motions exceeds a factor of two even on rock-like sites, with uncertainty in site response further increasing this factor. Such large uncertainties pose a major challenge in preparing for the potential consequences of the next megathrust event in Cascadia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Strong Ground Motion Catalogue of Selected Records for Shallow Crustal, Near Field Earthquakes in Iran

Understanding strong ground motions in the near-fault areas is important for seismic risk assessment in densely populated areas. In the past, lack of information on strong ground motion for large and moderate earthquakes led to the use of mainly far field large and moderate earthquake records in equations for calculation of the strong ground motion parameters. In this article, we collected and ...

متن کامل

TOPOLOGY OPTIMIZATION OF 2D BUILDING FRAMES UNDER ARTIFICIAL EARTHQUAKE GROUND MOTIONS USING POLYGONAL FINITE ELEMENT METHOD

In this article, topology optimization of two-dimensional (2D) building frames subjected to seismic loading is performed using the polygonal finite element method. Artificial ground motion accelerograms compatible with the design response spectrum of ASCE 7-16 are generated for the response history dynamic analysis needed in the optimization. The mean compliance of structure is minimized as a t...

متن کامل

Influence of Ground Motion Duration on the Structural Response at Multiple Seismic Intensity Levels

This paper aims to investigate the effects of motion duration on the structural seismic demands, seeking potential correlations between motion durations and structural responses at several seismic intensity levels. Three seismic intensity levels with 100years, 475years, and 2475years earthquake return periods (RPs) are first considered for correlation computations. Spectrally matched ground mot...

متن کامل

Evaluation of Nonlinear Response of Structures to Near-Fault Ground Motions and the Comparison of Results with Near-Fault Simulated Records

Near-fault ground motions have caused very much damage in the vicinity of seismic sources during recent earthquakes. It is well known that under specific circumstances, intensive ground shakings near fault ruptures may be characterized by short-duration impulsive motions. This pulse-type motion is generally particular to the forward direction, where the fault rupture propagates towards the site...

متن کامل

Assessment of Near-Fault Ground Motion Effects on the Fragility Curves of Tall Steel Moment Resisting Frames

Nowadays it is common to use the fragility curves in probabilistic methods to determine the collapse probability resulting from an earthquake. The uncertainties exist in intensity and frequency content of the earthquake records are considered as the most effective parameters in developing the fragility curves. The pulse-type records reported in the near-fault regions might lead to the major dam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017